SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1989). C45, 347

Structure of ammonium oxalohydroxamate: corrigendum. By Richard E. Marsh,* Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA
(Received 5 August 1988; accepted 20 September 1988)

Abstract

The structure of this compound, $\mathrm{NH}_{4}^{+} \cdot \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}^{-}$, was described [Sameena Begum, Jain, Ramakumar \& Khetrapal (1988). Acta Cryst. C44, 1047-1049] as triclinic, space group $P \overline{1}, \quad$ with $\quad a=3.952(1), \quad b=6.772(1), \quad c=$ 9.993 (1) $\AA, \alpha=98.06$ (1), $\beta=89.96$ (1), $\gamma=106.96$ (1) ${ }^{\circ}$, $Z=2$. It should be described as monoclinic, space group $C 2 / c$, with $a^{\prime}=12.955$ (2), $b^{\prime}=3.952$ (1), $c^{\prime}=9.993$ (1) \AA, $\beta^{\prime}=98.42(2)^{\circ}, Z=4$. The $C 2 / c$ coordinates are given. All anions are structurally equivalent and lie on centers of inversion; the ammonium cation lies on a twofold axis.

The vectors describing the new cell are [120], [100] and [001]. The corresponding coordinate transformations are: $x^{\prime}=y / 2+0.25, y^{\prime}=-x+y / 2+0.25, z^{\prime}=z$; the translations are needed to place the origin at a conventional center of symmetry in $C 2 / c$. After averaging the transformed coordinates over corresponding atoms in the two (indepen-

[^0]Table 1. Coordinates $\left(\times 10^{4}\right)$, space group $C 2 / c$
The e.s.d.'s, in parentheses, are estimated from the values in Table 2 of Sameena Begum et al. (1988).

		x	y	z
$\mathrm{O}(1)$	$8(f)$	$4287(2)$	$6932(6)$	$-435(2)$
C	$8(f)$	$2981(2)$	$3538(7)$	$260(3)$
N	$8(f)$	$3400(2)$	$4963(6)$	$-715(3)$
$\mathrm{O}(2)$	$8(f)$	$3324(2)$	$3776(6)$	$1490(2)$
$\mathrm{N} W$	$4(e)$	0	$3877(8)$	2500

dent) molecules in $P \overline{1}$, the coordinates in Table 1 result. For the averaging, no atom needed to be shifted as much as its reported e.s.d.

The anions lie on equivalent centers of symmetry and the ammonium ion lies on a twofold axis. Otherwise, the structure is effectively unchanged from that described by Sameena Begum et al. (1988).

Acta Cryst. (1989). C45, 347-348
Structure of high $-T_{c}$ superconducting tetragonal $\mathrm{Ba}_{2} \mathbf{Y C u}_{2.856} \mathrm{Al}_{0.04} \mathbf{O}_{6.76}$ at 298 and 120 K . By S. Sato, The Institute for Solid State Physics, The University of Tokyo, Roppongi 7-22-1, Minato-ku, Tokyo 106, Japan, I. Nakada, Institute of Research and Development, Tokai University, Tomigaya 2-28-4, Shibuya-ku, Tokyo 151, Japan, T. Kohara, Basic Research Laboratory, Himeji Institute of Technology, Shosha 2167, Himeji, Hyogo 671-22, Japan, Y. Oda, Faculty of Engineering Science, Osaka University, Machikaneyama-machi, Toyonaka, Osaka 560, Japan and H. Daidosi, Rigaku Industrial Co. Ltd, Matsubara-cho 3-9-12, Akishima, Tokyo 196, Japan
(Received 9 August 1988; accepted 1 September 1988)

Abstract

It was found by chemical analysis that a slight amount of aluminium existed as an impurity in the crystals of the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ system whose structure was determined by Sato, Nakada, Kohara \& Oda [Acta Cryst. (1988), C44,

0108-2701/89/020347-02\$03.00

11-14]. Occupancies of atoms in $1(a)$ [the $\mathrm{Cu}(1)$ site] were 0.856 (5) $\mathrm{Cu}, 0.04 \mathrm{Al}$ and 0.104 vacancy.

We have prepared superconducting tetragonal crystals of the $\mathrm{Y}-\mathrm{Ba}-\mathrm{Cu}-\mathrm{O}$ system, and determined their structure (Sato, © 1989 International Union of Crystallography

[^0]: *Contribution No. 7827 from the Noyes Laboratory of Chemical Physics.

